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Abstract

The Stokes profiles of Fe I lines in the photosphere of the Sun are cal-
culated within the Unno-Beckers-Landi-Degl‘Innocenti theory. Estimates of
the magnetic strengthening of the lines were obtained. The changes in the
Stokes profiles depending on the excitation potential, wavelength, equivalent
width, Lande factor, micro- macroturbulent velocities, radial velocity, damp-
ing constant, atmospheric model, magnetic field strength and direction are
considered. The graphically presented variations of the Stokes profiles make it
possible to determine the initial values of the input parameters for solving the
problems of magnetic field vector reconstruction by the inversion method. The
presented dependencies of the magnetic strengthening on the line parameters
will help to correctly select magnetically sensitive lines for the investigation
of sunspots, flux tubes, plages, and other magnetic features.
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1 Introduction

The results of observations and simulations of structural inhomogeneities in the solar at-
mosphere obtained in recent decades show a growing interest in the effects of the magnetic
field in spectral lines. Particular attention is focused on the development of magnetic flux
tube models, which are actively used in studies of the small-scale structure of the magnetic
field. Magnetic flux tubes are characterised by strong magnetic fields and small dimen-
sions. Strong magnetic fields polarise the emerging radiation and significantly change the
profile of spectral line and increase its equivalent width.

Studies of the structure of the magnetic fields in the Sun by analysing spectral lines,
which Unno [15] began in 1958, continue to the present day. For example, the recon-
struction of the structure of the magnetic field from observational data was carried out
by Auer et al. [1], Balandin [2], Skumanich et al. [11]. The influence of the gradient of
macro-velocities and the magnetic field strength on the shape of the Stokes profiles was
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investigated by Grigoriev et al. [5]. The dependencies of the magnetic strengthening on
the number of components and the distance between them, on the inclination angle and
strength of magnetic field, on the line strength, on the microturbulent velocity and damp-
ing constant were obtained by simple calculations in the works of Boyarchuk et al. [3].
Empirical line half-width dependencies on line strength, excitation potential and wave-
length were also established by statistical analysis of 402 iron lines of Stenflo et al. [12].
However, so far little attention has been paid to quantitative estimates of the magnetic
strengthening of the lines.

The aim of this work is to show the influence of the input calculation parameters on
the shape of the Stokes profiles of spectral lines, to quantify this influence and to reveal
the main trends in the behaviour of magnetoactive lines in the presence of a magnetic
field.

The paper is organised as follows. In section 2 we present the initial data and calcu-
lation tactics, the representation of Stokes parameter profiles used and the definition of
the magnitude of line strengthening in the magnetic field. Our results on the influence of
the atomic line parameters and the line formation medium are presented in Sect. 3 and
4, respectively. The analysis of the anomalous dispersion effect is presented in Section 5.
Our conclusions are presented in Section 6.

2 Calculations of Stokes profiles of spectral lines

The Fe I line of 525.021 nm was chosen for the calculation. It has the following parameters:
excitation potential EP = 0.12 eV; oscillator strength log gf = −4.89; Lande factor
gef = 3.0; central depth R = 0.714 and equivalent width W = 6.35 pm observed at the
centre of the solar disk. We adopted the LTE approximation, HOLMU solar atmosphere
model [6], microturbulent velocity Vmic = 0.8 km/s, and magnetic field with with strength
of H = 1500 G, an inclination γ = 55◦, an azimuth of ϕ = 30◦. According to the classical
Unsold approximation, the damping constant due to the Van der Waals forces between the
absorbing and perturbing atoms is γWdW multiplied by the correction factor E = 1.5. We
call the Stokes profiles of the FeI 525.021 nm line calculated with the above values of the
line and medium parameters as standard. All calculations are performed for the centre of
the solar disk (cos θ = 1) with using the SPANSATM program [10]. Our assumptions are
acceptable for estimating the effect of the magnetic field on photospheric lines.

The calculation tactic is as follows. To investigate the influence of the input parameter,
we form sets of fictitious lines on the basis of the Fe I 525.02 line with the equal equivalent
width W . In each set, one input parameter is modified within reasonable limits typical of
spectral analysis of the solar atmosphere. The values of all other input parameters remain
unchanged and correspond to the chosen standard. We then calculate the equivalent
width W of the lines without regard to the magnetic field, adjusting the corresponding
value of the oscillator strengths so that the calculated value of W for each line matches
the standard. For each set of lines, we calculate Stokes profiles and equivalent line widths
WH in the presence of a magnetic field.

In this paper we consider four Stokes parameters I, Q, U, V and four Stokes profiles
respectively. The I, Q, U, V parameters of polarised radiation are defined as follows:

I = I0 + Ip = I0 +
√
Q2 + U2 + V 2,

Q = Ilin(δ = 0◦)− Ilin(δ = 90◦),
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U = Ilin(δ = 45◦)− Ilin(δ = 135◦), (1)

V = Icirc(right)− Icirc(left),

where δ is the angle between the vector of linearly polarized radiation and a certain
direction determined by the measuring equipment. The I parameter is the total intensity
of the unpolarized I0 and polarized Ip components of the radiation. The parameters
Q, U represent the intensities of the linearly polarized radiation Ilin. Moreover, Q is
the difference between the intensities passed through linear polarizers, which are oriented
according to the angles δ = 0◦ and δ = 90◦, and U is the same, but with orientation of
polarizers δ = 45◦ and δ = 135◦. The V parameter represents the difference between the
circular components of the right and left polarized radiation Irightcirc , I leftcirc . Right-circular
polarization means that the electric field vector of the atom at a fixed point in space
rotates clockwise around the magnetic field vector if the magnetic field is directed towards
the observer. In the case of left-hand circular polarization, the electric vector rotates
counterclockwise. It is generally accepted that the magnetic field has a positive polarity if
its vector is directed towards the observer, and negative polarity if the vector is directed
into the interior of the Sun. In the XYZ coordinate system with the Z axis located along
the line of sight towards the observer, we determine the direction of the magnetic field
by the tilt angle γ between the magnetic field vector and the Z axis, and the azimuth ϕ,
which is counted from the X axis counterclockwise in the XY plane.

The Stokes parameter profiles have been calculated according to the following expres-
sions:

RI(λ) = (Ic − I(λ))/Ic = 1− I(λ)/Ic,

RQ(λ) = (Qc −Q(λ))/Ic = −Q(λ)/Ic,

RU (λ) = (Uc − U(λ))/Ic = −U(λ)/Ic, (2)

RV (λ) = (Vc − V (λ))/Ic = −V (λ)/Ic,

where: Ic, Qc, Uc, Vc are the Stokes parameters of continuous radiation, which is assumed
to be unpolarized, i.e., Qc = Uc = Vc = 0. To calculate the magnetic strengthening of the
line, we used the expression:

q = log(WH/W ) (3)

according to [3]. Here WH is the equivalent width calculated in the presence of a magnetic
field and W is the equivalent width of the same line without the magnetic field. Recall that
the equivalent width W of the lines used is the standard value of 6.36 pm. In addition,
we also calculated the percentage strengthening of the line as

∆ = (WH −W )/W ∗ 100. (4)

Note that the magnetic strengthening depends on the number of splitting components and
the distance between them, as well as on the blending processes between the components.
All components are divided into three groups. The number of components is determined by
the quantum numbers of the transition of a given line. The distance between components
in the group is equal

δ = 1.4 ∗ 106(gi − gk)λH/Vmic, (5)

where gi and gk are the Lande factors of the lower and upper levels. Blending between
components in the group depends on the δ distance. Blending between groups of compo-
nents depends on the angle of inclination of the magnetic field vector γ and the distance
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between the centers of gravity of the groups. The increase in the equivalent width due to
magnetic broadening depends mainly on the shape of the absorption coefficient. This is
because the presence of a magnetic field in the absorbing medium only affects the shape
of the absorption coefficient and does not change the number of absorbing particles. Mag-
netic broadening of weak and very strong lines is negligible or almost absent. Therefore we
use the sets of moderate lines which are sensitive to the type of absorption coefficient. This
will allow us to easily trace dependencies of the Stokes profiles and magnetic enhancement
depend on the input parameters.

All the results of our calculations with variations of the input parameters are presented
in the tables and figures. The tables show the following data: values of the input parameter
whose influence we are studying, equivalent line width WH in the presence of magnetic
field H, magnetic strengthening q and percentage strengthening of the equivalent width
∆. The figures illustrate the profiles of the four Stokes parameters RI , RQ, RU , RV ,
calculated for a given set of lines, and the dependence of the magnetic strengthening on
the considered parameter according to the data presented in the tables.

3 Influence of line parameters on Stokes profiles

We first consider the effect of wavelength, excitation potential, equivalent width, Lande
factor, and van der Waals attenuation constant on the Stokes profiles of lines formed in
the presence of a magnetic field.

Line wavelength. Fig. 1 shows that the Stokes profiles become wider as the line
wavelength λ increases from 400 to 700 nm, and their extremums decrease. Despite sig-
nificant changes in the shape of the profiles, the equivalent width practically remains the
same and the magnetic strengthening is almost independent of the wavelength and on
average ∆ ≈ 30% (Fig. 2, Table 1). It follows that the wavelength of the line has no effect
on the magnetic strengthening of the line.

Excitation potential. Fig. 1 shows that the shape of the Stokes profiles varies much
less with the excitation potential than with the line wavelength. The extrema of the Stokes
profiles only slightly decrease with increasing line excitation potential, and the width of
the profile wing does not change. The dependence of q on EP is insignificant (Fig. 4). It
can be noted that the magnetic strengthening slightly decreases (Table 2) in the moderate
Fe I lines with EP from 3 to 4 eV.

Equivalent width or line strength. Here we used a set of lines with different
W from 2 to 20 pm for the calculations. Quite significant changes in the Stokes profiles
occur depending on the line strength or equivalent width W . The greatest changes in the
shape of the RI profile can be seen in weak and moderate lines (Figure 5). The magnetic
strengthening is greatest in lines with W = 7–11 pm, and smallest in the weakest lines
(Fig. 6 and Table 3). In Table 3 we have also presented the equivalent widths W of the
lines used. Our calculations confirm the fact that moderate and moderately strong lines
are most sensitive to the magnetic field.

Lande factor. It is natural to expect significant changes in the shape of the Stokes
profiles with increasing Lande factor gef . Figure 7 shows the profiles for different values of
gef . As the Lande factor increases, the RI profile becomes wider, their central depth de-
creases, and their shape becomes more complex. The fraction of polarized radiation grows
and the extremums of the profiles RQ, RU , RV increase. The magnetic strengthening ∆
increases from 3 to 26% when the Lande factor is increased from 0.5 to 2 and becomes
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Fig. 1: Stokes profiles of the lines with wavelength λ = 400 (∗), 500 (�), 600 (4), 700
nm (♦) calculated in the presence of the magnetic field with H = 1500 G, γ = 55◦, and
ϕ = 30◦.

Fig. 2: Dependence of the magnetic strengthening q on the wavelength of the line λ.

Table 1. The magnetic strengthening q and ∆ of the lines with the different λ.
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Fig. 3: Stokes profiles of the lines with the potential excitation EP = 0 (∗) and 4 eV (♦)
calculated in the presence of the magnetic field with H = 1500 G, γ = 55◦, and ϕ = 30◦.

Fig. 4: Dependence of the magnetic strengthening q on the potential excitation of the
line EP .

Table 2. The magnetic strengthening q and ∆ of the lines with the different EP .
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Fig. 5: Stokes profiles of the lines with the equivalent width W = 1.76 (∗), 5.98(�), 9.95
(4), and 19.67 pm (♦) calculated in the presence of the magnetic field with H = 1500 G,
γ = 55◦, and ϕ = 30◦.

Fig. 6: Dependence of the magnetic strengthening q on the equivalent width W .

Table 3. The magnetic strengthening q and ∆ of the lines with the different W .
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Fig. 7: Stokes profiles of the lines with the Lande factor gef = 0.5 (∗), 1.5 (4), and 2
(♦), and 3 (�) calculated in the presence of the magnetic field with H = 1500 G, γ = 55◦,
and ϕ = 30◦.

Fig. 8: Dependence of the magnetic strengthening q on the Lande factor gef .

Table 4. The magnetic strengthening q and ∆ of the lines with the different gef .
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Fig. 9: Stokes profiles of spectral lines with the adjustment factor of the damping
constant E = 0 (∗); 5 (�); 10 (4) calculated in the presence of the magnetic field with
H = 1500 G, γ = 55◦, and ϕ = 30◦.

Fig. 10: Dependence of the magnetic strengthening q on the adjustment factor E.

Table 5. The magnetic strengthening q and ∆ of the lines with the different E.
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31% when gef reaches a maximum value of 3 (Fig. 8, Table 4). It follows that lines with
gef > 2 are the most sensitive to magnetic field.

Damping constant. We increased the value of the damping constant Γ = EγWdW

by changing the correction factor E from 0 to 10. As can be seen the shape of the Stokes
profiles (fig. 9) changes only slightly. The magnetic strengthening q decreases from 32% to
23% (Figure 10, Table 5) in moderate iron lines. This seems to indicate that the damping
constant affects the profiles much less in lines with low excitation potential than in those
with high EP . Note that all lines used have EP = 0.12 eV. Therefore, we can assume
that the dependence of the magnetic strengthening on the damping constant will still be
stronger for lines with high excitation potentials.

4 Influence of atmospheric parameters on Stokes

profiles

Here we consider the influence of the atmospheric model, which specifies the distribution of
temperature, pressure, density and chemical composition of the atmosphere. In addition,
we consider the effects of micro-macroturbulent velocities, macroscopic radial velocity, and
magnetic field strength, angle of inclination and azimuth.

Atmosphere model. To investigate the effect of temperature, we calculated the
profiles with different models. Figure 11 shows the temperature as a function of optical
depth (log τ5) in the following empirical models: a two-component spot model with a
cold (OBRIDCO1) and hot (OBRIDCO2) component [7]; two magnetic flux tube models
(WALTON1 and WALTON2) [14]: quiet photosphere models HOLMU [6], VAL [13],
HSRA [4]. Naturally, the temperature distribution has a significant effect on the shape
of the Stokes profiles. This can be clearly seen in Fig. 12 when comparing the profiles
calculated with the spot and magnetic flux tube models, although the magnetic field
is the same in these models. The Stokes profiles calculated with lower temperatures
(OBRIDCO1, 2) are similar to those calculated with quiet photosphere models (HOLMU,
VAL, HSRA), while the profiles calculated with higher temperatures (WALTON1, 2) are
wider and less deep. While the magnetic strengthening ∆ varies slightly between 26% and
30% in the lines calculated with the coldest and hottest model (Figure 13; Table 6).

Microturbulent velocity. According to (5), microturbulence reduces the magnetic
broadening of the line, therefore the influence of the magnetic field on the shape of the pro-
files becomes negligible in atmospheres with high microturbulence velocities. The higher
the microturbulence velocity, the smoother the Stokes profiles (Fig. 14) and the less the
equivalent width. The magnetic strengthening decreases from 31% to 6% as microturbu-
lence increases from 0 to 3 km/s (Fig. 15, Table 7).

Macroturbulence. The effect of classical macroturbulence is shown in Fig. 16.
Macroturbulence also flattens the profile shape, but does not change the equivalent line
width. Therefore, the magnetic strengthening is zero. As can be seen from Fig. 16 the
characteristic signs of magnetic field influence on the RI profile disappear at Vmac = 2
km/s. The action of macroturbulent velocities on the profiles complicates the recovery of
the magnetic field vector using spectral analysis.

Macroscopic radial velocity. If the radial velocity V rad is constant with height
in the formation region of the line, then the spectral line is shifted along the wavelength
without changing the profile shape. In real atmospheres, V rad varies with height, so the
shifts of different parts of the profile will be different. As a result, the line profile becomes
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Fig. 11: Temperature distribution of models of the quiet atmosphere of the Sun:
HSRA(♦), VAL(∗), HOLMU(⊕), the magnetic spot: OBRIDKO1(◦), OBRIDKO2(I), and
magnetic flux tubes: WALTON1(4), WALTON2 (2).

asymmetric. We adopted some V rad dependencies with large gradients to demonstrate
clearly the results of this effect on Stokes profiles (Fig. 17). Figure 18 shows how much
the shape of the Stokes profiles has changed as a result of the adopted radial velocity
gradients. The greater the velocity amplitude and the greater the gradient, the more
asymmetrical the shape of the profiles becomes. It seems possible to achieve a good
agreement with observations by performing an analysis of the Stokes profiles calculated
with the velocity field gradient and the magnetic field gradient, involving the response
functions. Although, undoubtedly, this is a complicated task.

Magnetic field strength. The higher the magnetic field strength, the more the RI

profile (5) expands, until a complete separation of the splitting components occurs (Fig.
19). The shape of the RI profiles is particularly sensitive to changes in magnetic field
strength. The second peak becomes noticeable on the wing of the RI profile beginning
at H = 1000 G. A complete splitting of the components occurs at H = 3000 G and
the entire profile has three peaks, as seen in Fig. 19. The magnetic strengthening q(H)
increases sharply as the magnetic field strength increases from 100 to 1000 G (Fig. 20).
The increase then slows down and remains almost constant with further increases in H.
The percentage change in equivalent width increases from 10 to 35% as the field strength
increases from 100 to 3000 G (Table 8).

The tilt angle of the magnetic field vector also strongly changes the shape of the
Stokes profiles. Increasing the slope angle γ from 0 to 90◦ affects the contribution of the
π-component and the shape of the RI profile changes significantly (Figure 21). The peaks
of RQ, RU profiles become large and the peak RV of the profile decreases to 0. A further
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Fig. 12: Stokes profiles calculated in the presence of the magnetic field with H = 1500 G,
γ = 55◦, ϕ = 30◦ and models of the quiet Sun: HSRA(♦), VAL(∗), HOLMU(⊕), magnetic
spot: OBRIDKO1(◦), OBRIDKO2(I), and flux tube: WALTON1(4), WALTON2 (2).

Fig. 13: Dependence of the magnetic strengthening q on atmospheric model marked with
a specific number. The symbols are the same as Fig. 12.

Table 6. The magnetic strengthening q and ∆ of the line calculated with different atmo-
spheric models. N is model number.
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Fig. 14: Stokes profiles calculated with the microturbulent velocity Vmic = 0.5 (∗), 1
(2), 2 (4), 3 (♦) km/s in the presence of the magnetic field with H = 1500 G, γ = 55◦,
and ϕ = 30◦.

Fig. 15: Dependence of the magnetic strengthening q on microturbulent velocity Vmic.

Table 7. The magnetic strengthening q and ∆ of the lines calculated with the different
velocities Vmic.
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Fig. 16: Stokes profiles calculated with macroturbulent velocities Vmac = 0 (∗); 1 (o);
1.5 (I); 2 km/s (�) in the presence of the magnetic field with H = 1500 G, γ = 55◦, and
ϕ = 30◦.

increase in the tilt angle up to 180◦ (the field is directed away from the observer and the
transverse field becomes longitudinal) results in a change in the RV sign. The following
equations take place:

RI(γ) = RI(180◦ − γ);

RQ(γ) = RQ(180◦ − γ);

RU (γ) = RU (180◦ − γ); (6)

RV (γ) = −RV (180◦ − γ).

It follows that the profile RV has a characteristic property. The value of RV will always
be negative if the magnetic field is directed towards the observer (γ = 0–90◦ and 270–
360◦). If the magnetic field is directed away from the observer (γ = 90–270◦), then RV is
positive. The characteristic property of the RV profiles allows the main magnetic field
direction to be determined. In principle the magnitude of the tilt angle can be refined by
simultaneously comparing the calculated RI and RV profiles with the observed ones. As
for the equivalent width and magnetic strengthening, they increase when γ changes from
0 to 60◦ and decrease when γ changes from 120 to 150◦ (Fig. 22, Table 9).

The magnetic field azimuth determines the position of the plane in which the
magnetic field vector and the line of sight are located. If the azimuth is changed, the
magnitude of the angles at which we observe linearly polarized radiation will also change.
The azimuth has no effect on the intensity of the emergent radiation in the line, and the
RI and RV profiles remain unchanged, while the RQ and RU profiles change (Fig. 23).
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Fig. 17: Dependencies of radial macroscopic velocity with optical depth V rad =
−2 log τ5 +1 (∗), −1.3 log τ5 +1 (�), 2.0 log τ5 +11 (×), 0.5 log τ5 +2.5 (I), −0.5 log τ5−2.5
(o).

Fig. 18: Stokes profiles calculated in the presence of the magnetic field with H = 1500 G,
γ = 55◦, and ϕ = 30◦ with different dependencies of radial macroscopic velocities V rad,
respectively Fig. 17.
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Fig. 19: Stokes profiles calculated in the presence of the magnetic field with the strength
H = 0 (∗), 100 (o), 500 (�), 1000 (4), 1500 (+), 2000 (♦), 3000 G (?), and γ = 55◦,
ϕ = 30◦.

Fig. 20: Dependence of the magnetic strengthening q on the magnetic field strength H.

Table 8. The magnetic strengthening q, ∆ of the lines with the different H.
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Fig. 21: Stokes profiles calculated in the presence of the magnetic field with H = 1500 G,
γ = 0◦ (∗); 20◦ (�); 60◦ (4); 90◦ (♦); 150◦ (?), ϕ = 30◦.

Fig. 22: Dependence of the magnetic strengthening q on the angle of inclination γ.

Table 9. The magnetic strengthening q, ∆ of the lines with the different γ.
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Fig. 23: Stokes profiles calculated in the presence of the magnetic field with H = 1500 G,
γ = 55◦, and ϕ = 0◦ (∗); 30◦ (�); 45◦ (4); 90◦ (♦).
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Fig. 24: Dependencies of the magnetic field parameters on optical depth. H =
(−1.5 log τ5 + 1) ∗ 1000 (o), (−0.5 log τ5 + 1) ∗ 1000 (I), (0.5 log τ5 + 3.2) ∗ 1000 (×), 1500 G
(∗). γ = (−1.5 log τ5 + 1) ∗ 10 (o), (−0.5 log τ5 + 1) ∗ 10 (I),(−2.0 log τ5 + 1) ∗ 10 (�), 55◦

(∗). ϕ = (−1.5, log τ5 + 1) ∗ 10 (o), (−0.5 log τ5 + 1) ∗ 10 (I), 30◦ (∗), exp(−10τ5) rad (�).
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Fig. 25: The Stokes profiles calculated in the presence of the magnetic field with the
different dependencies of the magnetic field strength on optical depth, respectively Fig.
24, and γ = 55◦, and ϕ = 30◦.

Fig. 26: The Stokes profiles calculated in the presence of the magnetic field with H =
1500 G, the different dependencies of the magnetic field tilt angle on the optical depth,
respectively Fig. 24, and ϕ = 30◦.
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Fig. 27: The Stokes profiles calculated in the presence of the magnetic field with H =
1500 G, γ = 55◦, and the different dependencies of the magnetic field azimuth on the
optical depth, respectively Fig. 24.

Fig. 28: Stokes profiles calculated in the presence of the magnetic field with H = 1500 G,
γ = 55◦, and ϕ = 30◦ at different positions on the solar disk cos θ = 1 (∗), 0.6 (o), 0.3 (I),
0.1 (�).
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The following equations are valid for the azimuth (ϕ):

RQ(ϕ) = −RQ(90 + ϕ) = RQ(180 + ϕ),

RU (ϕ) = −RU (90 + ϕ) = RU (180 + ϕ). (7)

Inhomogeneity of the magnetic field. In real conditions of stellar atmospheres, the
strength and direction of the magnetic field change with height. Such magnetic fields are
called inhomogeneous. To demonstrate the response of Stokes profiles to magnetic field
inhomogeneity, we took three arbitrary height dependencies for strength, tilt angle and
azimuth are presented in Fig. 24. The profiles calculated according to these dependencies
are shown in Fig. 25–27. Their shape is sensitive to the field strength gradient in the
absorption line formation region. The wider the area of line formation and the larger
the gradient, the stronger the effect. It should be emphasized that the width of the line
formation region also depends on the magnetic field strength. It is therefore necessary to
calculate the contribution functions and response functions for the Stokes profiles when
we determine the magnetic field parameters from the observed spectrum of polarized
radiation.

The position on the solar disk is determined by cos θ, where θ is the angle between
the line of sight and the normal to the solar surface. The spectral lines observed at the
limb of the solar disk become narrower and shallower than those in the centre of the disk.
Figure 28 shows the Stokes profiles calculated for cos θ = 1.0, 0.6, 0.3 and 0.1 with a
standard value of oscillator strengths log gf .

5 Anomalous dispersion

We also consider the effects of anomalous dispersion, which appear only in the RV profiles
of circularly polarised radiation. In our calculations, the anomalous dispersion was ac-
counted for according to Raczkowski’s theory [8, 9]. Signs of anomalous dispersion appear
in the wings of the RV profile near its centre. Here the sign of RV is reversed with respect
to the rest of the wing. The magnitude of the anomalous dispersion in the RV profile is
clearly visible in Fig. 29 and Fig. 30. As can be seen, the effect of anomalous dispersion
increases with increasing wavelength, magnetic field strength and decreases with increas-
ing excitation potential, attenuation constant and microturbulence. It also increases at
the solar limb. There is no clear dependence on oscillator strength (or equivalent width),
effective Lande factor, temperature, angle of inclination of the magnetic field. In general
this effect is small, but nevertheless becomes clearly visible in atmospheres with very low
microturbulent velocities (Vmic < 0.5) and with strong magnetic fields (H > 2000G).

6 Conclusions

In this work we have considered the change of spectral lines in the photosphere of the Sun
in the presence of a magnetic field. Analysis of the results allows us to draw the following
conclusions.

The shape of the Stokes profiles depends mainly on line strength, wavelength, and the
Lande factor. The best lines to study magnetic fields in stellar atmospheres are moderate
lines (W = 7–11 pm) with the longest possible wavelength and a large Lande factor.

22



Fig. 29: Anomalous dispersion effect in the central part of the RV profiles calculated in
the presence of the magnetic field with H = 1500 G, γ = 55◦, ϕ = 30◦ with the following
parameters. 1 – λ = 400 (∗), 500 (o), 600 (I), 700 nm (�); 2 – EP = 0 (∗), 4 eV (o); 3 –
log gf = 0.5 (∗), 1.5 (o), 2.0 (I), 3 (�); 4 – gef = 0.5 (∗), 1.5 (o), 2.0 (I), 3.0 (�).

Regarding the parameters of the medium in which the spectral lines are formed, the
magnetic field strength, the inclination angle of the magnetic field vector, and the veloc-
ity field have the greatest influence on the Stokes profiles. The magnetic field strength
significantly changes the shape of the total radiation profile and introduces characteristic
features that become more pronounced as the strength increases. At the same time, the
polarized radiation profiles become broader and stronger. The tilt angle affects the po-
larised radiation profiles to a greater extent. Micro- and macroturbulent velocities smooth
out the features of the profiles associated with the magnetic field. Therefore, the shape of
the observed Stokes profiles in the atmospheres of stars with microturbulence greater than
3 km/s will not correspond to the real magnetic fields. Macroscopic radial velocity shifts
the line as a whole. Magnetic and velocity field gradients in the line formation region add
asymmetry to the Stokes profiles.

The spectral line always becomes wider under the influence of the magnetic field, and
its equivalent width increases. In other words, there is a magnetic strengthening of the
line in the magnetic field. According to our results, the magnetic strengthening little
dependent on wavelength, excitation potential, damping constant, atmospheric model and
magnetic field azimuth. It depends mainly on the Lande factor, the magnetic field strength
and the inclination angle. The larger the Lande factor and the magnetic field strength, the
larger the magnetic strengthening. The greatest strengthening occurs when the angle of
inclination is 55–120. The magnetic strengthening grows up to a certain limit, after which
the saturation effect sets in and the growth stops. Moderate lines (W = 7–11 pm ) are
the most sensitive to magnetic field variations. The percentage strengthening of such lines
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Fig. 30: Anomalous dispersion effect in the central part of the RV profiles calculated
in the presence of the magnetic field with H = 1500 G, γ = 55◦, and ϕ = 30◦ with
the following parameters. 1 – models of quiet atmosphere of the Sun HSRA (∗), VAL
(o), HOLMU (I), models of magnetic spot OBRIDKO1 (�), OBRIAKO2 (4); models
of magnetic flux tubes WALTON1 (?), WALTON2 (♦); 2 – positions on the solar disk
cos θ = 1 (∗), 0.6 (o); 0.3 (I); 0.1 (�); 3 – magnetic field strength H = 100 (I), 500 (o),
1500 (∗), 2000 (�), 3000 G (4); 4 – tilt angle of the magnetic field vector γ = 0◦ (∗), 20◦

(o), 60◦ (I), 90◦ (�); 5 – Vmic = 0 (∗), 1 (o), 2 (I), 3 km/s (�); 6 – E = 0 (∗), 5 (o), 10
(I).
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is maximum and therefore they can be successfully used to investigate the structure of
the magnetic field. For strong lines (W = 20 pm), the percentage magnetic strengthening
is 2.7 times smaller, and for weak lines (W = 2 pm) 10 times smaller than for moderate
lines.

The profiles of circularly polarized radiation are sensitive to anomalous dispersion
which appears as a small projection with opposite sign near the centre of the profile
on both wings and is proportional to the magnetic strengthening. The magnitude of
this effect increases slightly with wavelength and equivalent width, and increases more
markedly with magnetic field strength. The anomalous dispersion decreases sharply with
increasing amplitude of microturbulent velocity and is not observed at velocities of 1 km/s.

Analysis of the four observed and computed Stokes profiles will provide additional
information about the magnetic field structure. In our view, the inclusion of Stokes profiles
in spectral analysis of the atmosphere is necessary. The promise of Stokes profile studies
should not be in doubt. However, our analysis also shows that comparing calculated and
observed Stokes profiles may not give unambiguous results. New methods for analysis of
Stokes profiles need to be developed.

In conclusion, the author hopes that on the basis of the results presented here it will be
possible to: 1) make a correct choice of magnetically active lines for modelling structural
irregularities of the solar photosphere, such as flares, spots and other formations, for
which models are currently being actively developed; 2) determine initial values of input
parameters when recovering the magnetic field vector by analysing spectropolarimetric
line profiles with diagnostic methods.
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